एक समीकरण या समस्या दर्ज करें
कैमरा इनपुट की पहचान नहीं की जा सकी!

समाधान - सांख्यिकी

योग: 5.75
5.75
अंकगणित माध्य: x̄=1.438
x̄=1.438
माध्य: 0.312
0.312
रेंज: 4.875
4.875
विचलन: s2=5.651
s^2=5.651
मानक विचलन: s=2.377
s=2.377

समाधान के अन्य तरीके

सांख्यिकी

चरण-दर-चरण समाधान

1. योग ढूंढें

सभी संख्याओं को जोड़ें:

0.125+0.25+0.375+5=234

योग बराबर होता है 234

2. माध्यम खोजें

योग को संख्याओं की संख्या से विभाजित करें:

योग
234
संख्या की संख्या
4

x̄=2316=1.438

माध्य बराबर होता है 1.438

3. मध्यमा खोजें

संख्याओं को आरोही क्रम में व्यवस्थित करें:
0.125,0.25,0.375,5

शब्दों की संख्या गिनें:
(4) शब्द हैं

क्योंकि शब्दों की एक समान संख्या है, मध्यम दो शब्दों की पहचान करें:
0.125,0.25,0.375,5

मध्यम दो शब्दों के बीच की माध्य का मूल्य पता लगाएं, उन्हें मिलाकर और 2 से विभाजित करके:
(0.25+0.375)/2=0.625/2=0.3125

माध्यम = 0.3125

4. रेंज खोजें

रेंज पता लगाने के लिए, न्यूनतम मान को अधिकतम मान से घटाएं।

सर्वाधिक मान बराबर 5
न्यूनतम मान बराबर 0.125

50.125=4.875

रेंज = 4.875

5. विभिदेश खोजें

नमूना विचलन ज्ञात करने के लिए, प्रत्येक पद और माध्य के बीच का अंतर ज्ञात करें, परिणामों को वर्गमूल करें, सभी वर्गीय परिणामों को मिलाएं, और संख्या से योग को घटाएं ।

माध्यम बराबर 1.438

वर्ग विभेद प्राप्त करने के लिए, प्रत्येक शब्द से माध्य घटाएं और परिणाम को वर्ग बनाएं:

(0.1251.438)2=1.723

(0.251.438)2=1.410

(0.3751.438)2=1.129

(51.438)2=12.691

नमूना विचलन प्राप्त करने के लिए, वर्ग विभेद को जोड़ें और उनके योग को शब्दों की संख्या से घटाएं 1

योग:
1.723+1.410+1.129+12.691=16.953
शब्दों की संख्या:
4
शब्दों की संख्या माइनस 1:
3

विचलन:
16.9533=5.651

नमूना विचलन (s2) = 5.651

6. मानक विचलन खोजें

नमूने का मानक विचलन नमूना विचलन का वर्गमूल होता है। इसलिए विचलन आमतौर पर वर्गीय चर द्वारा प्रस्तुत किया जाता है।

विचलन: s2=5.651

वर्गमूल खोजें:
s=(5.651)=2.377

मानक विचलन (s) = 2.377

इसे सीखने की क्यों जरूरत है

सांख्यिकीय विज्ञान हमें डाटा का संग्रहण, विश्लेषण, व्याख्या, एवं प्रस्तुति करने में सहायता करता है, खासकर अनिश्चितता और परिवर्तन के संदर्भ में। सांख्यिकी में शायद ही सबसे बुनियादी अवधारणाओं को समझना हमें हमारे दैनिक जीवन में भेंट देने वाली जानकारी को बेहतर तरीके से प्रसंस्करण और समझने में मदद कर सकता है! इसके अलावा, 21 वीं सदी में अब तक सभी मानव इतिहास में से अधिक डाटा एकत्र किया गया है। जैसे-जैसे कंप्यूटर अधिक शक्तिशाली होते गए हैं, उन्होंने हमें कभी से अधिक बड़े डेटासेट्स का विश्लेषण और व्याख्या करना आसान बना दिया है। इसके कारण, ऐसे कई क्षेत्रों में सांख्यिकीय विश्लेषण दिन-प्रतिदिन महत्वपूर्ण हो रहा है, जिससे सरकारों और कंपनियों को पूरी तरह से डाटा को समझने और उसके प्रतिक्रिया करने में सहायता मिलती है।